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I. Abstract 

This study explores the use of delay differential equations to model the adsorption of contaminants in 
decontamination processes using nanoparticles, providing a detailed description of the dynamics of 
adsorption and desorption in aqueous systems. A simplified model has been developed that incorporates 
delays in two differential equations. This model accurately captures the reaction and transport times in the 
interaction between nanoparticles and contaminants, such as heavy metals and organic compounds. 

The approach presented allows the simulation of adsorption kinetics, evaluating the influence of 
parameters such as adsorption rate, desorption and time delay on the concentration of the pollutant and the 
amount adsorbed. The versatility in the choice of these parameters allows the model to be applicable in both 
industrial and environmental contexts, facilitating the optimisation of water decontamination processes. 
Practical examples of heavy metal adsorption by iron oxide nanoparticles are illustrated. These examples 
emphasize the need to adjust parameters based on specific system characteristics, enhancing process 
efficiency. 

Overall, the proposed model emerges as a useful tool for the simulation and understanding of adsorption 
processes in complex systems, providing a robust theoretical basis for future research on the use of 
nanoparticles in the removal of aquatic pollutants. 

II. Context of Decontamination with Nanoparticles 

Nanoparticles have been widely used for pollutant removal due to their high surface area and unique 
nanoscale properties. Common pollutants that can be removed by nanoparticles include heavy metals such 
as lead (Pb), cadmium (Cd), mercury (Hg), inorganic contaminants (e.g., nitrates and phosphates) and organic 
pollutants such as dyes, pharmaceuticals and pesticides. 

Several studies have applied delay differential equations to model adsorption processes involving 
nanoparticles in decontamination. These models capture important dynamics in adsorption and desorption 
processes, especially when memory or transport time effects affect the efficiency of contaminant removal. 

Advanced modeling approaches, including time-delayed differential equations, have proven effective in 
capturing the dynamic interactions between nanoparticles and contaminants in processes such as adsorption 
and advanced oxidation. For instance, time delays allow for better representation of the non-instantaneous 
diffusion and interaction of pollutants with nanoparticles, as evidenced in advanced Fenton processes and 
mathematical models by (Sahai et al., 2021) and (Chawla et al., 2024a). These studies demonstrate the utility 
of such models in real-world applications like the adsorption of heavy metals (e.g., Pb or Hg), where 
understanding the interplay of adsorption and desorption dynamics is critical. The incorporation of dual time 
delays enhances the predictive power and realism of these models, making them valuable for optimizing the 
design and efficiency of decontamination systems. The delay in the equation captures the time it takes for 
the pollutant to diffuse and reach the surface of the nanoparticle, which is essential for optimising industrial 
and environmental decontamination processes. The authors of this software recommend reviewing articles 
on modelling with delay differential equations and their application in the removal of pollutants using 
nanoparticles (Mathematics | Special Issue: The Delay Differential Equations and Their Applications, n.d.) 
(Chawla et al., 2024b). 
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In these processes, nanoparticles act as adsorbents, being able to interact with contaminants through 
adsorption mechanisms, where the contaminants adhere to the surface of the nanoparticles. These can be 
made of various materials, such as metal oxides (iron oxide or titanium dioxide), carbon (carbon nanotubes 
or graphene) or functionalised polymers. On the other hand, adsorbates correspond to the contaminants to 
be removed, such as heavy metal ions (e.g., Pb2+ or Cd2+) or organic compounds (e.g., dye molecules or 
pharmaceuticals). These contaminants, usually present in liquid media, are reduced in concentration in the 
liquid phase by the adsorption process. 

III. Delay Differential Equations 

The process of adsorption, governed by the interaction between the adsorbate and the adsorbent, can be 
described using delay differential equations. These equations take into account not only the instantaneous 
changes in the system but also the delay effects that arise due to diffusion and surface interactions. Below, 
we present the foundational equations that model the dynamics of adsorption and desorption in systems 
involving nanoparticles. 

Equation for Adsorbate Concentration, 𝐶𝐶(𝑡𝑡): 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑘𝑘1𝐶𝐶(𝑡𝑡) + 𝑘𝑘2𝑄𝑄(𝑡𝑡 − 𝜏𝜏) 

This equation represents the rate of change in the concentration of the adsorbate within the liquid 
phase. The rate of change of adsorbate concentration decreases due to adsorption −𝑘𝑘1𝐶𝐶(𝑡𝑡)  and increases 
due to delay desorption 𝑘𝑘2𝑄𝑄(𝑡𝑡 − 𝜏𝜏). 

 Equation for Amount Adsorbed, 𝑄𝑄(𝑡𝑡): 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝐶𝐶(𝑡𝑡 − 𝜏𝜏) − 𝑘𝑘2𝑄𝑄(𝑡𝑡) 

This equation describes the rate of change in the amount of adsorbate bound to the nanoparticle 
surface. The rate of change of the adsorbed amount increases due to delay adsorption 𝑘𝑘1𝐶𝐶(𝑡𝑡 − 𝜏𝜏) and 
decreases due to desorption −𝑘𝑘2𝑄𝑄(𝑡𝑡). 

To solve this system of differential equations with delay, we require initial conditions defined in the 
interval 𝑡𝑡 ∈ [−𝜏𝜏, 0]: 

Initial Concentration: 𝐶𝐶(𝑡𝑡) = 𝐶𝐶0  for 𝑡𝑡 ∈ [−𝜏𝜏, 0] 

Initial adsorbed quantity: 𝑄𝑄(𝑡𝑡) = 𝑄𝑄0  for 𝑡𝑡 ∈ [−𝜏𝜏, 0] 

 

Symbol Description Unit 

𝑪𝑪(𝒕𝒕) Adsorbate concentration mg/L 

𝑸𝑸(𝒕𝒕) Amount adsorbed mg/g 

𝒕𝒕 Time min/h 
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𝒌𝒌𝟏𝟏 Adsorption rate constant 1/min 

𝒌𝒌𝟐𝟐 Desorption rate constant 1/min 

𝝉𝝉 Delay time min 

𝑪𝑪𝟎𝟎 Initial adsorbed quantity mg/L 

𝑸𝑸𝟎𝟎 Initial amount of adsorbate adsorbed per unit 
mass of adsorbent. 

mg/g 

 

The delay (𝜏𝜏) can represent the time required for the adsorbate to reach the active site on the 
adsorbent or the transport time within the system. The inclusion of delays can complicate the analytical 
solution of the equations, often needing numerical methods suited for those equations. This model is a 
simplification and can be adjusted or extended according to the specific characteristics of the adsorption 
process under study, including factors such as multiple adsorption stages, variations in temperature, pH, 
among others. 

The numerical parameter values and initial conditions established for this delay adsorption model 
simulation are presented: 

𝑘𝑘1 = 0.05 min−1 , 𝑘𝑘2 = 0.02 min−1 , 𝜏𝜏 = 3min , 𝐶𝐶0 = 10 mg/L and  𝑄𝑄0 = 0 mg/g . 

With the values established, it is feasible to proceed to the numerical resolution of the delay differential 
equations applied to the proposed adsorption model. These values, although representative and valid as a 
starting point, can be adapted to precisely fit the specific properties of the adsorbent and adsorbate, as well 
as the experimental conditions of the analysed system. Such tuning not only allows a better fit of the model, 
but also facilitates obtaining results that are more in line with the actual operating conditions and parameters 
inherent to different adsorption contexts, thus providing a flexible framework for application in various 
investigations. 

IV. Physical Interpretation of Parameters in Nanoparticle Adsorption Processes  

The adsorption process with nanoparticles can be modelled by means of delay differential equations, such 
as those shown above: 

1. Adsorption and Desorption Rates (𝑘𝑘1 and 𝑘𝑘2): 

The adsorption rate constant (𝑘𝑘1) depends on the affinity of the pollutant for the nanoparticle surface. For 
example, iron oxide nanoparticles may have a high affinity for lead ions, and the value of 𝑘𝑘1 will be high. The 
desorption rate constant (𝑘𝑘2) reflects the tendency of the contaminant to be released from the surface of 
the nanoparticle. A low value of 𝑘𝑘2 will indicate a strong retention of the contaminant on the nanoparticle. 

2. Process Delay (𝜏𝜏): 

The delay (𝜏𝜏) can represent the time it takes for the contaminant to reach the surface of the nanoparticle, 
or the time it takes to fully settle or adhere to the surface. In the case of nanoparticles dispersed in a liquid 
medium, this delay may be related to the diffusion of the contaminant through the medium until it encounters 
the active adsorption surfaces. This phenomenon is particularly important in nanoparticle systems, as  their 
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small size allows particles to disperse over a large volume before the contaminants start to be adsorbed 
effectively. 

V. Case Example: Adsorption of Heavy Metals with Iron Oxide Nanoparticles 

Suppose we are trying to remove lead ions Pb2+ from a contaminated water source using iron oxide 
nanoparticles (Fe₃O₄). In this case, the iron oxide nanoparticles serve as the adsorbent, and the Pb2+ ions 
represent the adsorbate. Initially, the concentration of lead in the water 𝐶𝐶0 is 10 mg/L, and no lead is 
adsorbed on the nanoparticles, so the initial amount adsorbed is 𝑄𝑄0= 0. 

For this system the adsorption rate constant is 𝑘𝑘1 = 0.05 min−1, indicating a good adsorption rate due to 
the high affinity of Pb²⁺ for the iron oxide surface. The desorption rate constant is 𝑘𝑘2 = 0.02 min−1, 
suggesting that although some desorption may occur, most of the lead will remain attached to the 
nanoparticles. The delay time is 𝜏𝜏 = 3min, reflecting the time required for the lead ions to diffuse through 
the aqueous medium and reach the active surfaces of the nanoparticles. 

Initially, the liquid phase contains a high concentration of lead 𝐶𝐶0 = 10 mg/L, with no adsorption on the 
nanoparticles. As time progresses, the adsorption process begins, reducing the lead concentration in the 
liquid phase due to the interaction with the nanoparticles. The time delay 𝜏𝜏 = 3 min indicates that the 
adsorption process is not instantaneous; the lead ions require time to diffuse and reach the nanoparticles. 
While adsorption is dominant, some desorption occurs at a low rate 𝑘𝑘2 = 0.02 min−1, allowing a fraction of 
the lead ions to return to the liquid phase. Consequently, the system evolves towards an equilibrium in which 
a significant fraction of Pb2+ ions is adsorbed on the nanoparticles, substantially reducing the pollutant 
concentration in the water. 

The proposed model accurately describes adsorption kinetics in decontamination processes using 
nanoparticles, capturing the pollutant’s dynamic behaviour during its adhesion process to the adsorbent 
surface with a time delay. This feature is particularly relevant in applications where nanoparticles are used 
for the removal of pollutants from wastewater or drinking water sources, as it provides a detailed 
representation of the variation of concentrations over time and facilitates the optimisation of the design of 
removal processes. With appropriate parameters, the model is presented as an effective tool for simulations 
to predict the behaviour of various adsorption systems in both industrial and environmental contexts. In 
addition, a simplified adsorption model incorporating delays is introduced using two delay differential 
equations, providing a useful basis for describing systems where reaction or transport times directly impact 
the dynamics of the adsorption process. 

VI. Oscillatory Behavior with Dual Delay Times: A More Realistic Approach 

In systems where nanoparticles are used to adsorb contaminants such as nitrates, it is often observed 
that the adsorption and desorption processes do not occur instantaneously, nor do they share identical delay 
times. The time required for the contaminant to diffuse through the solution to the nanoparticle surface 
differs from the duration needed for the adsorbed contaminant to desorb back into the solution. Distinctions 
in delay times may result in oscillatory behavior, reflecting the dynamic interplay between adsorption and 
desorption. 

To account for this more realistic scenario, the model can be extended to incorporate two distinct 
delay times: 

Equation for Adsorbate Concentration, 𝐶𝐶(𝑡𝑡): 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑘𝑘1𝐶𝐶(𝑡𝑡) + 𝑘𝑘2𝑄𝑄(𝑡𝑡 − 𝜏𝜏2) 

In this equation, the term 𝑘𝑘2𝑄𝑄(𝑡𝑡 − 𝜏𝜏) includes a delay 𝜏𝜏2, which represents the desorption time for 
the contaminant to release from the nanoparticle surface back into the liquid phase. 

Equation for the Amount Adsorbed, 𝑄𝑄(𝑡𝑡): 
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𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝐶𝐶(𝑡𝑡 − 𝜏𝜏1) − 𝑘𝑘2𝑄𝑄(𝑡𝑡) 

Here, 𝑘𝑘1𝐶𝐶(𝑡𝑡 − 𝜏𝜏1) includes a delay 𝜏𝜏1, capturing the time required for the contaminant to diffuse and 
reach the nanoparticle surface before being adsorbed. 

To simulate oscillatory behavior with this dual-delay model, the following parameter values are 
suggested: 

𝑘𝑘1 = 10 min−1,  𝑘𝑘2 = 2 min−1, 𝜏𝜏1 = 0.1 min , 𝜏𝜏2 = 5 min, 𝐶𝐶0 = 20 mg/L and 𝑄𝑄0 = 0 mg/g   

These values are based on experimental observations in similar nanoparticle systems and provide a 
more realistic representation of the dynamic nature of adsorption processes involving contaminants like 
nitrates. The differentiated delay times  𝜏𝜏1 and 𝜏𝜏2 reflect the distinct diffusion and desorption times associated 
with contaminant interactions with nanoparticle surfaces. 

Given that the adsorption and desorption times in nanoparticle systems are often distinct, does the 
dual delay model provide a more accurate representation of the real adsorption and desorption processes? 
This model, with separate delay times for diffusion to the surface and release from the surface, might better 
capture the complex dynamics observed in real-world contaminant adsorption processes involving 
nanoparticles. This example provides a comparison between the simplified model with a single delay time 
and the more realistic approach with two delay times (𝜏𝜏1and 𝜏𝜏2). The dual model is a more realistic approach 
when modelling adsorption processes with nanoparticles where diffusion and desorption occur at different 
times. 

The simulations described in this example of dual delays will be implemented and detailed in the 
guide available at the end of the document. This guide provides a step-by-step explanation on how to use the 
program, from introducing the equations and parameters to configuring and executing the 
simulations.  Currently, scientific literature on the modelling of pollutant adsorption processes on 
nanoparticles by means of differential equations with two-time delays is limited. However, there are studies 
that address adsorption with models that incorporate time delays or analyse adsorption-desorption dynamics 
in systems with nanoparticles (Mayoral et al., 2011).  

VII. Conclusion 

The model, based on differential equations with two different delays, provides an accurate and dynamic 
description of adsorption and desorption processes in systems containing nanoparticles, such as Fe3O₄@Ag, 
for pollutant removal. By adding two delay times, it is possible to represent more realistically the phenomena 
related to the diffusion of the pollutant towards the adsorbent surface and its subsequent dispersion, 
reflecting the oscillatory behaviours observed in the simulations. These oscillations highlight the dynamic 
interplay between adsorption and desorption, demonstrating how delays affect the time evolution of the 
concentrations. The numerical simulations corroborate the effectiveness of the model to improve 
fundamental parameters and to develop more efficient decontamination systems, highlighting it as a useful 
tool for industrial and environmental uses. 
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USER GUIDE FOR DELAY DIFFERENTIAL EQUATIONS (DDEs) 

 
Step 1: Initial Setup 

1. Open the Program: Start the “Delay Differential Equations (DDEs)” program on your 
computer. 

2. Settings Section: At the top, you will see “Delay Differential Equations DDEs” with a Settings 
section where you can save or load previous configurations. 

Step 2: Entering the System Equations 

Add Equations: 

• Locate the section titled Equations governing the system. 
• Equation 1 and Equation 2 are already set up for editing. 
• Enter your equations in the provided text fields. In this example, the variables are 𝑪𝑪 and 𝑸𝑸. 
• If you need additional equations, click ADD EQUATION. 
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Step 3: Defining Parameters 

Enter Parameters: 

• Go to the Parameters section. 
• You will find fields labeled 𝒌𝒌𝟏𝟏, 𝒌𝒌𝟐𝟐, 𝒌𝒌𝟑𝟑, etc., where you can enter the values of your parameters. 
• To add more parameters, click ADD PARAMETER. 
• In this example, parameters 𝒌𝒌𝟏𝟏 and 𝒌𝒌𝟐𝟐are already included with specific values (𝒌𝒌𝟏𝟏 =
𝟏𝟏𝟏𝟏 𝐦𝐦𝐦𝐦𝐦𝐦−𝟏𝟏 and 𝒌𝒌𝟐𝟐 = 𝟐𝟐 𝐦𝐦𝐦𝐦𝐦𝐦−𝟏𝟏). 

Step 4: Defining Delays 

Enter Delays: 

• Move to the Delays section. 
• Enter the desired delay value. In the example, 𝝉𝝉𝟏𝟏 has a value of 𝟎𝟎. 𝟏𝟏 𝐦𝐦𝐦𝐦𝐦𝐦 and 𝝉𝝉𝟐𝟐 𝟓𝟓 𝐦𝐦𝐦𝐦𝐦𝐦. 
•   If you need additional delays, select ADD DELAY. 

Step 5: Entering the Terms of the Equations 

Set Up the Terms: 

• In the Terms of the equations section, enter the terms for each equation. 

 For Equation 1, the form of the equation is: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑘𝑘1𝐶𝐶(𝑡𝑡) + 𝑘𝑘2𝑄𝑄(𝑡𝑡 − 𝜏𝜏2) 

 with an Initial value of 20 mg/L. 

For Equation 2, the equation is: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝐶𝐶(𝑡𝑡 − 𝜏𝜏1) − 𝑘𝑘2𝑄𝑄(𝑡𝑡) 

with an Initial value of Initial concentration of adsorbate  0 mg/g   

• Adjust the equations as needed. 

 
 

Step 6: Setting Up the Simulation 

Define Simulation Values: 

In the Simulation settings section: 
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• Step time: Enter the time step for the simulation. 
• Final time: Define the final time for the simulation. 
• Relative error tolerance: Set the relative error tolerance, e.g., 0.0001. 
• Number of digits: Define the number of digits for the results. 

 

 

Step 7: Start the Simulation 

Run the Simulation: 
• Once you have configured all parameters, equations, and delays, click Next or the 
corresponding button to start the simulation. 
• The program will calculate the results based on the delay differential equations you entered. 

Step 8: Download and Run the File in LTSpice 

1. Download the File: 
• In the Settings section, you will see options to Download, Copy, or Show the necessary file. 
• Click Download to save the file to your computer. 

2. Run the File in LTSpice: 
• Open LTSpice on your computer. 
• Load the downloaded file by opening it in LTSpice. 
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Step 9: Simulate and Export Results 

1. Run the Simulation: 
• In LTSpice, run the simulation to generate results based on the loaded file. 
• During the simulation, monitor the variables of interest. 
 

2. Save the Desired Variables: 

After 
the simulation is complete, select the variables you wish to save for analysis. 
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Export the results in text format (TXT) by saving them in LTSpice. This exported file will contain 
the values of the variables over time or other relevant data. 

 

Step 10: Upload Results Back into the DDEs Program 

1. Upload the Results: 
• Return to the Delay Differential Equations (DDEs) program interface. 

 Click 
Upload result and select the TXT file you saved from LTSpice. 
 
2. Generate Graphs: 
• Once uploaded, the DDEs program will automatically recognize the data from LTSpice. 
• The program can then plot the data, allowing you to visualize the results with clear, accurate 
graphs. 

 

 


